AL DR PR b5 ST T Pt Lt LA AT SO R P L L AW Rt b

The World of q

Richard Askey
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University of Wisconsin
Madison, Wl 53706, USA

e-mail: askey©@math.wisc.edu

A few of the many ways in which g-series arise in mathematics will be con-
sidered. These include a discrete approximation to the normal integral, Ra-
manujan's extension of the beta integral on (0, oc), the ¢-integral which was
iIntroduced by Fermat to integrate the power function but has many other
uses, and the continuous g-ultraspherical polynomials of L. J. Rogers. Here
an absolutely continuous measure occurs in the orthogonality.

1. INTRODUCTION

The first explicit connection between group theory and special functions which
most mathematicians see is trigonometric functions as a parametrization of the
unit circle, with the addition formula for cos(6 + ¢) coming from the rotation

of the circle and the fact that distances are preserved under this rotation. For
most mathematicians this is the only explicit connection they have seen between
group theory and special functions, but they have some acquaintance with a few
other functions which can be represented as hypergeometric functions, so when

they are told that there are functions similar to cos @ and sin 6 which arise in the
representation theory of some other groups they are willing to believe that this
might be important, and that if they spent a reasonable amount of time the N
could learn this material.

Basic hypergeometric functions are a different matter. Here, most mathe-
maticians say they have never seen any of these functions, and most of themn
are right. KLIMYK (this issue) has surveyed much of Tom Koornwinder’s work.
Recently this work has dealt with basic hypergeometric functions, usually in
connection with quantum groups. NOUMI (this issue) has written about quan-
tum groups and some of the ways basic hypergeometric functions arise there. I
want to start at a more elementary level and show how some basic hypergeo-
metric functions arose earlier. In keeping with the historical development, and
so as not to frighten off readers with notation which seems cumbersome, basic

1o Toeon Koornwinder with thanks for what he has taught us
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hypergeometric functions will not be considered in detail and the standard nota-
tion for the terms in these series will only be introduced later. For the present,
hypergeometric and basic hypergeometric series can be thought of as follows.

The favorite test for convergence of an infinite series for students just learning
about convergence is the ratio test. If the series

2.0y, (1.1)
has
C 1+ 1 . . .
"t — rational function of n, (1.2)
Cp

the series is a hypergeometric series. If

Crn +1

Cr,

= rational function of ¢", (1.3)

where ¢ is a fixed number, |g| < 1, the series is called a basic hypergeometric
series.

2. A DISCRETE APPROXIMATION TO THE NORMAL INTEGRAL
The normal integral is

/ e~ dt = /7. (2.1)

One approximation to this is obtained by taking a set of equally spaced points.
There is no reason why this set needs to contain 0, so this approximation 1s

o0 0O
1 o | N\ 2 _l._ _ 2 o 2 ¢
-3 E :6 T(n+c)® _ T3 TC § :6 LS 2Tcn (22)
— — OQ

The series on the right is what is usually called a theta tfunction. There are a
number of questions one can ask about this function or the series on the left.

How rapidly does the series on the left converge to the normal integral

(2.1) when 7 — 07 (2.3)
What are the zeros of this function? (2.4)
What can we use this function for? (2.5)

We start with question (2.3), and rewrite the left hand side as

b

) ,
) =733 e’ 15 (2.6)
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T'he big difference between an integral and a series is that it is possible to change
variables in an integral, but not in a series. The one change of variables which
can be done with the series (2.6) is to shift the parameter n by an integer. This
leads to the important, but a first sight trivial result

flx+1) = f(z). (2.7)

Once this is observed, it is natural to expand f(x) in a Fourier series

o0
f(.'IC) _ Z &ke%rzk::z: . (28)
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by shifting the line of integration and using Cauchy’s theorem and an easy
estimate on the decay of the integrand. Thus

O T\ 5 OO
. - 2 ‘3 — ,2 2 ‘& I
E :8 T(n+x)” _ (_____) § :63 k“m*/r+2mika | (29)
T
—_— ) — X0

We have proved (2.9) when 7 > 0, but the proof continues to hold when Re 7 > 0
and the principal branch of the square root is taken. To answer the question of
how rapidly (2.2) converges to (2.1), rewrite (2.9) as

O OC
\/’;Z e“T(TL'FC})’E __ \/7? 14+ 9 Z GWA:EW-E/T cos 2mrek | (2]_0)
— 0O

k=1

This is an incredible formula. It gives the error rate of O(e~" /7), which for

: : 1O 2 . _ 1o _ *
T = .01 gives a bound of size e~ '%9™" which is less than 107428, However it
gives much more, a complete series giving as many terms as one wants as in a
convergent series.

’
|||||

summation formula, but for one specific function. The same argument works
as long as the function f(x) decreases rapidly enough and its Fourier series
converges absolutely, which is essentially determined by the smoothness of ().



Formula (2.10) was discovered by Poisson and quite a few others. BELLMAN |7
gives or outlines four or five different proofs and there are others.

Question (2.4) may seem like a natural question when you are starting to
study mathematics, but after initial disappointments one usually learns to ask a
much less ambitious question, such as, what can one say about the zeros of the
function in question? Recall that the Riemann hypothesis for the zeta tunction
only says that the nontrivial zeros lie on a line. They can not be determined
exactly. So what gives us the idea that we can hope to find the zeros ot the
function exactly? The periodicity above says that if one zero can be found then
an infinite number of them are known. That is not sufficient evidence to lead us
to suspect that any of the zeros can be found exactly, but the incredible formula
given in (2.10) might lead us to expect more to be possible with this function
than with most periodic functions. My old teacher, S. Bochner, used to refer to
this topic as the miracle of theta functions, and that 1s not an overstatement.

To consider the zeros we start with new notation. Consider

flaa) =Y 0" 2,11

where |g| < 1 will be assumed from now unless we state difterently. "The shift in
n used above gives

X0
fla,q) =) "+ a" = qzf(qz,q). (2.12)

If f(x,q) vanishes for one value x, it must vanish on the bilateral geometric
sequence

2n

Toq~ ", n=0,%£1,+2,.... (2.13)

Rather than try to find zy directly, and then show that all the zeros are given
by the bilateral geometric sequence (2.13), we start with one zero and write a
function which has zeros on exactly this bilateral geometric sequence.

The most natural function which vanishes on the integers is sinwz. Euler
showed that

(X0 *’“EQ
SIN Tx = I I I 1—— . (2.14)
ndﬂ'
=1

To find an analogous function whose zeros lie on a geometric sequence consider

a product which corresponds to (2.14). Just as in (2.14), we had to combine
factors to get a convergence product, since

i T |
11 (1-= (2.15)
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diverges, we need to do a bit more than write down the product of terms of the
form (1 — (xq"/x0)), n = 0,%£1,... . This works for n > 0, but if all the terms
~for n < 0 are used the product diverges. Consider

h(x,q) = H (1+ ")+ gl (2.16)

71 ==()

This vanishes when © = —g¢!*™4", n = 0,+1, 42, ..., and is analytic in x for all
complex r except r = 0. Thus h(z,q) can be expanded in a Laurent series

h(lﬂ', Q) — Z CnZ’ . (2]7)

h(g*z,q) (1+ %) o -
hz,q)  1+qr  qo (2.18)
or
O OO
Z CnX"' = qx Z cnq*" ™. (2.19)
— o0 — 00

Equating coefficients of z**! gives

cnr1 =q"" ey (2.20)
Thus

cn = q" o, n=0,1,.... (2.21)
From

h(z;q) = h(z™", q) (2.22)
we get

C—n = Cn (2.23)

so (2.21) continues to hold when n = —1,-2,... . Thus

OO OO
H (1 + ") (1 + ¢*" Tl = ¢ z gt x" . (2.24)
71=0) — OO

To find ¢y, a different argument must be given. Jacobi sieved the series using
specific values of z, say x = q and x = —¢q. This gives
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(1 __l_.q'2;'r‘1,+2)2(1 _I__q8fnﬂ+4)(1+ qS‘r'L—}-S)

E‘o(q‘q’j - L (1 + qsﬂn—f-Q)*(l + ¢8n+6)(1 4 ¢8n+4)(1 + ¢37+8)
X0
=TI+ + g
=0
_ (1 - qﬂn—}_%)‘(l _'_ﬂqél'niljﬁ%)
(1 — g2n+2)
_ (1-¢™)
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qfni""mn _ H(l - q27z,+2)(1 4+ (]QH—HOL‘)(:{ 4+ q’2n+1:l,:-—--1) | (227)

e ) n =0

This is usually known as the triple product for obvious reasons.

b s

—jrin

Replacing g by q"% and then taking x = —¢™ 2 gives Euler’s formula

“
| .'3 (A

q 2 g . (228)

There are other ways to find cg(q). One of these, which leads to a more general
identity of Ramanujan, will be considered in the next section.

3. THE ¢-BINOMIAL THEOREM AND ITS EXTENSION BY RAMANUJAN

The problem in trying to find c¢g(q) in (2.24) could be solved easily if there
were a value of z for which one could evaluate the series in (2.24). Over one
hundred years ago, FRANKLIN [12].gave a simple combinatorial proof of (2.28).
However there are no values of x for which it is obvious how to sum the series
in (2.24). Since being greedy has paid off so far, we can try to be greedy again
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and consider a function whose zeros are on part of bilateral geometric series. We
can take one of the products in (2.16), as Euler did. We can also consider finite
products taking the first fa,("*torq from each of the twc) pr c)du(" ts. These can be

1S no need to since any ﬁnlte string of pI()du(ts can bo 111()\/@(1 l)y %lldmg them
from one product to the other one. Also, there is no longer any advantage in

using g“ rather than q as the factor between zeros, so we will use ¢g. With this
change we can consider the partial product

A |

(3.1)

where we have taken a different choice for the variable to simplify the final
formula. It is now time to introduce the standard notation:

(25 q) e H(l — Xq ) (3.2)

k=0
- ro—1
' q)n = (20" D xq (3.
’ | k=0

T'he product in (3.1) can be written as

, _ (25 q)oc (qr™ :q) -
f -,'r)(m) — (mé’Q)w(qw 1?"1)”& — - 3‘4)
m,n\< I (mqn ? q)m(qm—l-l : q) (

This product is a Laurent polynomial in x, and so it can be written as

n
fm,n(m) — Z Ck‘mk : (3.5)
k=—mn

The same type of argument used in the previous section gives

fm ,L(Q-L') (1 o ‘Lq )(1 — & 1) — (1 T qn:[:)
fm n (.)Z') (1 — ZI‘)(]. — qmw——-l) ((]m‘ — .,l)

(3.6)

Observe the cancellation of the factors 1 — 2~ ! and 1 — . This occurs because

the numerator in the right-hand equality in (3.4) is a theta product. By this we
mean that there are two products

(@3 q) oo (b; @) o (3.7)

and the product of the variables a - b is the base g. Recall (2.27), which we now
write as
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(%0700 (—47;0%) 00 (=071 ¢%) 0o = Y g™ 2™ (3.8)

- OQ

The factor which depend on = have the property that the product of these
variables, (—qx)(—gz~!) = ¢*, is the base. That is why we call the products
in (3.7) a theta product when ab = g. The third factor in (3.8) is important,
but we want a way to distinguish the case of three products, which we call the
triple product, from the case of two products which lead to a theta function as
a Laurent series in .

The functional equation (3.6) gives a first order recurrence relation for the
coeflicients ci. It is

(¢" — q%) (1 — g tF)g"
kL= rmc’“ T (1 = gmtitk) Ck - (3.9)

This 1s solved by

(qm’n; Q)k nk '
cr = —————q"" ¢y 3.10
(g™t q)k ( )
as 1s obvious from £ = 1,2,...,n and can be checked easily for k = —1,—2,...,

—m by using the definition (3.3) for these g-shifted factorials when £ < 0. Thus

(:II; Q)n(qm — Co Z ")" (q w)k (311)
k=—m

m—l-l q

To find ¢p is now easy, since the coefficient of ™ on both sides is easy to find.
These coethicients give

n_n(n— CO( aQ)n n2
(—1)rg"( /2 = @), (3.12)
Or
(g™ 9)n
Cg = ~———— "1 3.13
) (g; @)n (3:13)
Thus
(5 )n (g7 @)mlq; On (a7 9k k
S AL AL MR LA AN Tre)® . 3.14
(qm+1 q) k;m (qm“‘f‘l, q L (q ) ( )

When m = 0 this is an extension of the binomial theorem to

g

(w50) = 30 1Dk (grgyr, (3.15)
k=0
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or replacing x by —x we have

Tl - |
— Z — ......(.q’ q)” qk(}.rm fl)/:.?,.mkr ' (31())
— () k(@5 q)n—x

The factor

(93 d)n r”] (3.17)
q

(@GOG n_r Lk

1s called the g-binomial coefficient, or the Gaussian polynomial. It is a polyno-
mial in ¢ with positive integer coefficients whose sum is the binomial coefficient

n n!
= 3.1&
(k) k'(n —k)! (3.18)

When m — oo and n — oo in (3.11) the result is the triple product in the
form

(q; Q)oo(il'; q)tx)(qul; (])o@ _ z(___1)nq*n;('n,--—1}/"21:?1, | (319)
— O

Ramanujan’s extension of this and the classical g-binomial theorem (3.15) is
the nonterminating form of (3.14). This can be found directly from (3.14) after
1t has been rewritten. The first problem is to remove the ¢" in ¢"x. This is done
by replacing x by ¢ "x. Then (3.14) is

Z SOk k(2070 (= Q) (@) (7 ) - (3.20

***** = —m (qm—l—l Q)k (1:3 Q)oo(q”'bzrjl (J)m(q7’+la (J)oo(qm'H; fl)m '
When ¢™*! = b, ¢7™ = a, this can be written as

f: (@ @k g _ (023 9)o0 (5 @)oc (45 Doe(339) | (3.21)

~ (b q)k (25 @)oo (21 9) 00 (55 @) e (£ @)

where the series is taken over all integers, which can be done since the terms
in (3.21) vanish when £ > n and when k < —m. Formula (3.21) is in fact true
when 1t converges, which it does when

b £ )
- < lz| <1, (3.22)
N .

and 1t 1s the identity of Ramanujan referred to above. There are many proofs
of (3.21). One particularly nice one is to start with the product side, assume in
addition to (3.22) that
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b |
e | &
aq

vl (2.23)

and carry out the argument above. This gives the products on the right hand side
which depend on x, and the remaining products can be obtained from Abel’s
continuity theorem, i.e. multiply both sides by (1 — z) and take the limit as
r — 17, using

lim f(x) = f(1) (3.24)

€I

when f(z) is analytic for ¢ < |z| < 1. The details are given in [1] and [8], which
are easily accessible, and an earlier treatment was given in [25|. The idea of
proving a special case of (3.21) and using it to get the general result was first
given in [14]. Ismail used the classical case when b = ¢ to derive (3.21). Both
sides of (3.21) are analytic in b for b sufficiently close to the origin.

An interesting exercise is to take the reciprocal of the products in (3.21) which
involve x and apply the above argument to this function. The interest 1s in trying
to find out why a completely erroneous result arises, and then seeing why the
above argument 1s correct.

Question (2.5) has not really been answered sufficiently, so let us give another

application. Here we will start to consider g as the primary variable and x as a
parameter. Consider the case b = aq of (3.21). The result is

(X

SR (., 7)oo (5% ,q) (395 (3.25)

£~ 1 - ag" ~ (4:q) _ (a59)s (459)

There are three theta products on the right hand side, which will be interesting
in the next section. Here we will do something else with this identity as it relates
to theta functions. Take £ = 1 in (2.27) to get

> 2
Y g = (%)~ a4h)2
— 00
)

(6% ¢%) o (-—q, 2
(g% ¢°) ‘2‘

)oc:)
(7% oo ( 102) oo |

|

oo( )rnr(_qz‘%?qﬁl)oo (3.26)

C>O

I

The square of this is
2
X i, X0
E q" = E ro(n)qg™ (3.27)
— O 11 =()
where 73(n) is the number of representations of n as the sum of two squares,

where each point on the circle
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J k" =n (3.28)

is counted. Thus

S gt = (6N

7, =()

(681 (-¢% )« (3.29)
= 2 —— =1+4+4

f‘:}o 1 + QBN ”; 1 + qzn
= L+d) D (~DkgEEDn

n—=—1 k=0

This gives Jacobi’s result that

’)"2(?”?,) — 4[d1 (7‘1) — d;;(’?’l)], Tl Z 1 (530)
where d;(n) is the number of divisors of n of the form 4m + i. FINE [11] was
the first to use Ramanujan’s sum (3.21) to obtain results on sums of squares,
although the use of the Lambert series in (3.29) to (3.30) goes back to Jacobi.
He had another method of deriving this result.

Finally, there is a noncommutative version of the finite binomial theorem

which plays a central role in the development of SU,(2), the quantum group
analogue of SU(2).

Let x and y be indeterminants a and ¢ a number which satisfy the following
rules for multiplication

yr = qry, qr =xq, qY = Yq. (3.31)
Then
n R
(:L' 4+ y)n — . mn-—k:yl: ‘ (332)
im0 SR

SCHUTZENBERGER [21] stated and proved this result in the form given here,
but 1t is just a very elegant and simple way to state and derive one of MacMahon’s
statistics for the Gaussian polynomial defined in (3.17). The statistic is the
number of inversions. The product rule for exponentials continues to hold in
this setting, and when it is used, and the resulting product is expanded directly
and as the product of two series, and coefficients are compared, the result is a
known g-extension of the Chu-Vandermonde sum for binomial coefficients

_ _ _ 3.33
Z k n—Kk ' n ) ( )

k=0



This identity is enough to get started deriving almost all of the known hyper-
geometric series summations and transformations, and the same is true for the
corresponding g-series identity and the known basic hypergeometric summations
and transtformations.

4. THE ¢g-INTEGRAL
Fermat read Archimedes carefully and extracted a new method of evaluating

1
/ r*dr (4.1)
0

He decomposed the interval |0, 1] on a geometric progression, ¢, n = 0,1,.. .,
using the measure of the interval [¢"T!, ¢"] as a point mass at ¢", and arrived
at the following geometric series which he could sum

- (1—q) 1
1 — a nk .n S S ‘ 4 O
( I)Zq q 1______qk:--1 1__|_q+..._|_.qk: ( )

n=>_0

Thus he arrived at a proof of

1
k 3.
.1.#.1 d.j T — AN T
/0 rhdr = —— (4.3)

which had earlier been evaluated for £k = 0,1,...,9. See TOEPLITZ [24] for a
treatment of Archimedes’ work and also that of Fermat. In the last century
THOMAE [23] and later JACKSON [15] considered an extension of Fermat’s sum,
but held g fixed. I like to call the measure used the Fermat measure, which puts
mass (1 —g)g" at x = g™, or more generally mass a(1 — ¢)g™ at £ = aq™. Then
define

[ f@deri=alt =) Y fag")a" (4.4)

rr=()

which defines d,x on this interval. Unless otherwise specified we will take a = 1.

T'he nonterminating form of the g-binomial theorem, i.e. b = g of (3.21), can
be rewritten as a g-integral. It is

| _ _ _
x — ('I:q;q o0 FC o)y (/
/ ] a1 oo = ()T (6) (4.5)
) (29”5 q) o Lgla +5)
where
I—‘q(a) _ ((};g)m (1 . q)l«-—-c:r I (4 6)
(445 @) ‘ |

1s the natural g-extension of the gamma function. This is easlly seen to be a
g-extension of the beta integral on [0, 1].
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To see what Ramanujan’s sum (3.21) is, rewrite it as

0 wcqn—ka—}—ﬁ

q (4.7)

(—¢q™;q)

To see what this extends, take a = ¢~ in (4.4) and write it as

L IN

q S
/0 flx)dgz = (1—q) Y  flg")q". (4.8)

n=— N

79

T'hen N — oo gives a definition for a g-integral on (0, co)

fleyder = (1—q) > flg")g" . (4.9)

O 1L == — O

Thus (4.6) is

/ T (=g @)oo D)l (B) (=g q) o (=" /i g)
Ly —
0

L —4__ 109> (410
(—ct; 9o Colot (-G~ (—a/age

Then g — 17 gives

[ Tame ~ Tae 0T = g
since
qgl’{l__ ['y(a) =T'(«) (4.12)
and
lim (q(?--;Q)m =(1—x2)7%, a noton [1,00). (4.13)

For proofs of these two limit relations see Koornwinder [16].
The special case of (4.10) when o« + 3 = 1 is very important, and is usually
written as

0 .tc:ik-—-l T |
/ — dt = — , O0< Rea<l. (41‘1)
0 1+t S1I1 7T (¥

The analogous ¢-integral is (3.25). Any book on elliptic functions which includes
much about Jacobi elliptic functions has some of the Fourler series expansions

263



of the Jacobi elliptic functions sn, cn, dn, etc. All of these are special cases of
(3.25), and so are seen to be g-extensions of Euler’s integral (4.6).

5. THE CONTINUOUS ¢-ULTRASPHERICAL ORTHOGONAL POLYNOMIALS
These polynomials were introduced by L. J. Rogers in a special case in 1894 [19]
and in the general case in 1895 [20]. They were then ignored for decades until
they were rediscovered in 1941 by FELDHEIM [10] and LANZEWIZKY [18]. Their
motivation for finding these polynomials is easy to explain, so here 1t 1s.

(1—2zr+7%)72 =Y Pya)r", r[<1, -1<z<1. (5.1)
n=uy

When r = cos 8 this can be rewritten as

| PUVERE A J?9 \ % 2 — " 3 ’ aﬁrl’ — » |
1 —re E ., (COos , _ ,
(1 —re”)" 2" = P, (cos 0)r 1 <r <1 (5.2)
n==_

Fejér considered an extension of these polynomials by looking at a function f(z)
which is analytic in a neighborhood of the origin and is real for real z. Set

f(Z) — Z CLT’LEHS a, real, ag 7& 0. (53)
n=_0
Consider
| O T
f(re')]? = Z r' Y arQn_cos(n — 2k)0, r real,
7‘;;0 k=() (54)
— Z r"pn(cosf).

n=1I()

Fejér showed that under appropriate conditions on aj, the zeros of p,(z) are
real, lie in —1 < x < 1 and the zeros of p,(x) and p,,+1(z) separate each other.
See SZEGO |22], Chapter 6. These are all properties of polynomials which are
orthogonal on [—1, 1] with respect to a positive measure, so it is natural to ask
what other sets of orthogonal polynomials are generated by (5.3) and (5.4). One
example 18

flz)=(1-2)"" (5.5)

and the polynomials are the ultraspherical polynomials C?(z). The attentive
reader can probably guess the answer as to what other orthogonal polynomials
there are, but I will save the answer until we derive it. The first question that
occurs 18 how can one start to answer such a question. Clearly the orthogonality
1s the key, and there is another property which is equivalent to orthogonality.
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We say {p.(x)}, pn(x) of exact degree n, is ortho gonal if

b
/ Prn(@)po (x)da(x) 0, m # n -
o (1 .

] | .
h,, - >0, m=n,

I

moment problem attached to the special case 3 = >~ of Ram anujan's discrete
g-beta integral on |0,00) is an instance. Ramanujan evaluated the inte egral ob-
tained when dyt is replaced by dt in (4.9), and its special case /3 = oc has the
same moments as (4.9) has when § = oo. See [5] for an evaluation of Ramanu-
jan’s other g-beta integral on (0, co).

Every set ot orthogonal polynomials {p, (ir)} satisfies a three-term recurrence
relation of the form

where da(x) is a positive measure. The measure need not be uni que, and the

rpp(x) = Appnyr () + Bup, (@) + Copa—1 () (5.7)

with A4,,, B,,, C, real and A, _,C,, > 0, n = 1,2,... . This is immediate from
orthogonality. The converse is also true. If {p, ()} satisfies (5.7) with real
coefficients and A, _1C,, > 0, n = 1,2,..., then there is a positive measure
do(x) for which (5.6) holds. This is an old theorem, which was rediscovered
a few times before people began to notice it. It was first brought to general
attention by Favard’s discovery of it in 1935 [9], and that is probably what led

Feldheim and Lanzewizky to this problem. Since p,, () defined in (5.4) satisfies
pu(—2) = (=1)"p, (). (5.8)
B,, = 0. We then rewrite (5.7) as
2cos0p, (cosl) = A, pn+1(cosB) + C,p,—1(cosb). (5.9)

Using (5.4) in (5.9) we get

T

T
E App—f cOsS(n + 1 — 2k)6 E QpQy—p cos(n — 1 — 2k)6

k=0 k=10
n-+1

= A, Z ApGni1—kcos(n+1—2k)6 (5.10)
k=(

rn—1

+C, E ApQyp—1-kcos(n —1—2k)0.
k=()

T'hen the coefficients of cos(n + 1)8 give
2&()61% — QAT“LCLOCLN—}—”.[ ()11 )

since cos(n + 1)0 = cos(—n — 1)0. Thus
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A” = Uy / (Ly, 4+ 1 SInce (L() # 0. (5 12)

The coefhicients of the next two terms give

Qy,

aQ,—1 + apa, = a0, + Crhapa,—1 (5.13)
An+1
and
Uy, |
A2Apn -2 T A Ap—] = a Aoy -1 + C*r'z,alav‘z.w—-iz . (5..].4)
-+ 1

These give C,,, and when these values of (;, are equated and simplified, using

g = _n (5.15)
Ay — 1
the result is
Sn+1181+ S —S2 — Sp—1] = 5150 — 5251 (5.16)
Set
S,.=T,+S51, soT;=0. (5.17)

The equation (5.16) becomes

(T’rz—i—l + Sl)(Tn '_" Tnml + S?l. """ 5-2)

5.18
— Sl ('Tn =+ 1) "'" SQ(Tnml + Sl) ( )

Or
TrL—}—l(Tn """" T?’Lml) — (52 T Sl)(T’TL—I-l T T”)"Lml) . (519)

This gives T,,,1 as a rational function of 7T;, and T,,_1, so the most elemen-
tary function we could hope for as a solution of (5.19) is a rational function of
something. Since 77 = 0 it is natural to try

A(l _ qn—-—l)

Using this in (5.19) gives
A(L=q") = (Sy - S1)(1+ q)(1 — Bg"). (5.21)

Then A = (52 — 51)(1+¢q), B =1 when |q| # 1. This gives

v(l — Bag™— 1
S, =T, +8 = af 1_:@5” ) (5.22)

266



1 [y .. .. . Ll A
B o el RN B b 5 T R G A T o LT oS e A R L o B S T LA s s
ila [ t

for constants o and /3. Then

" (55 9)n
" (éi{qf) (5.23)
) TL
and when |g| < 1,

X T .
B @), (Baz; q)~ _
f(Z) — Tt L ST 1) | 5 94
.;__.___:U (a5 @)n (vz; q) ( )

by the g-binomial theorem. The constant « is a scale factor which can be taken
to be 1. The orthogonal polynomials are now denoted by (,,(x;3|q) and their
three-term recurrence relation is

20(1 — B¢")Ch(x; Blq) = (1 - (J?H:vl )Cnt1 (s Blq)
+(1 — 32" VO 1 (x5 Bq) .

When |g| < 1 all of the above is correct as given. If |¢| > 1 it is possible to carry
out the same type of argument since

v3 (1 — (o~ Iyn—1 — 1
Sn — Q{ L ( - (qr ),,,, — 4.[ 3___ X ) (5.26)
q (1 —qg~™) '

reduces this case to the case when |¢| < 1. In addition to the case when 3 = ¢ as
g — 1, which gives the ultraspherical polynomials C> () with f(z) = (1 — z)™*,
there 1s a case when g i1s a root of unity. The orthogonality for all these cases
have finally been worked out. For —1 < ¢ < 1 there are a number of treatments
and an extension to a more general set of orthogonal polynomials with four free
parameters in addition to the q. See GASPER and RAHMAN [13] for references
and treatments of some of these. For ¢ a root of unity, ALLAWAY [3] was the first
to realize that some interesting orthogonal polynomials arise in this case. He was
treating a different characterization problem and rediscovered the continuous ¢-
ultraspherical polynomials of Rogers along with a different limiting case when ¢
1S a root of unity. Both of these two cases when ¢ is a root of unity are considered
in (2|, and the orthogonality is worked out there.

To complete this short introduction to g-series, the integral which can be used
to prove the orthogonality of C,,(z; 3|q) will be evaluated. It is

?
)

I, = / " o—2ike (€ @)oc (€ D)o
0 (/68229; Q)m([jemgﬂé?; Q)m

when |3| < 1. To evaluate I, observe that the infinite products almost can be
matched with the factors depending on z in Ramanujan’s sum (3.21). The only
change needed is to take off the factor (1 — e~2%) so that the numerator factors
are a theta product. Then with = = 3e%?, a = 371, b = 3, we have
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| (H q) (/3(13 (1)% < ( le )N /m’ -1 kO ~ 2160\ _21n6
[, = 3" e (1 — e )e " do
A ((17 q) (/32 Q)Oﬁ ; (/6 q)n () ( (527
_ B~ Bga) (375 @)k (1 + ") ‘
(¢ @) (8% q) (Bq; )4

The rest of the proof of the orthogonality from this integral is given in [6].
The orthogonality for —1 < 5, g < 1 1s

» ]
/ C,(x; Blq)Co(x; 3lq)-
J -1
~ 1 —2(22% — 1 2k dx
T (2% - Vg + ¢ Y 0, m#£An (5.28)

1= 2222 — 1)Bq" + 32q%F | (1— 12)3
(1 """"'ﬂ)(d“' )n (5 q) (/iq q) ~c

— D M = 7.

(1= B¢")(q;0)n (3% @)oo (45 @)

I have not mentioned the reason for the use of the vertical bar in the notation
of C,,(x;3|q). There are two different g-ultraspherical polynomials. The other
4] is orthogonal with respect to a discrete measure symmetrically located about
r = (0 with the masses supported on two geometric progressions with 0 as the
limit point. These are denoted by C,,(x; 3 : ¢q). As architects say, form should
follow function, so the dots denote the discrete case and the bar the absolutely
continuous case.

All of t'hi*”s W*C)I‘k comes up n th@ study of S“Uq( ) and related quant um groups

k=0

gToups and ba»s,;l(.,.; hypu geometxm berles, was the dl.scovery tha,t the integral (0.27)
and the orthogonality (5.28) contain special cases which arise on SU,(2). This
was discovered by KOORNWINDER [17].
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